## Site Assessment Report

**STAR-CENTRE** 



[Viability of solar project investments necessitates an accurate assessment of a site's suitability, which is a crucial step in the solar project site assessment process for determining the potential of a location for solar energy system installation.]

# A. Introduction Goal and scope of the site assessment Project information, including stakeholders (such as developer/client, utility, regulatory body, etc.) and timelines B. Project Site Description

- Project site location, including address, geographical coordinates, and maps, etc.
- Physical characteristics of the site such as land topography, area size, and soil type.

#### C. Solar Resource Assessment

- Solar access, daily average availability and seasonal variation
- Shadowing influence of potential surrounding obstructions

#### D. Infrastructure Assessment

- Evaluate site accessibility for transport of materials and personnel via road, railways and airport
- Site's proximity to the grid and potential interconnection points
- Accessibility to water

#### E. Regulatory and Community Impact

- Local laws (such as permits) and regulations applicable
- Assessment of potential impact of project on the local community

#### F. Electricity Output

- Expected electricity to be generated as per the proposed project capacity

#### G. Economic Analysis

- Project cost estimates
- Financial incentives available such as tax rebates, subsidies and grants
- Estimated return on investment

#### H. Solar PV Array Layout Options

- Available Solar PV Panels mounting options, such as on rooftops, on ground mounts or on elevated poles, etc.
- In case of rooftops evaluate the roof structural strength and shadowing impact



#### I. Conclusion and Recommendations

- Summary of the assessment

- Recommendations for project implementation

### System Design Specifications

STAR-CENTRE

[Designing a solar project involves several key specifications to ensure the system is efficient, safe, and meets the energy needs of the site.]

#### A. System Description

- Type of system i.e., ground mounted or rooftop grid-connected photovoltaic system
- System size
- Expected annual energy output
- Type of technology and technical specification of system components (such as solar modules, inverters, mounting structure, wiring, monitoring system etc.)

#### B. High Level System Design

- System power flow block diagram with all major components
  - Solar component design
    - Land requirement
    - Single array layout diagram
- Substation component design
  - One-line drawing for major components
  - Information about function of substation each component

#### C. In Detail System Design

- Detailed design of solar components
  - Single Array Parameter which includes solar panel parameters, string parameters, current output, combiner box capacity, inverter capacity, ILR, and irradiance correction factor, and continuous current correction, earthing, AC/DC cables and fuse protection, etc.
  - Solar tilt angle and azumith
  - Solar array layout including single solar array drawing and solar plant layout
- Detailed design of substation components
  - Single line diagram of collector arrangement, which includes inverter and transformer, to step the voltage to bring to sub-transmission level
  - Design of key components of the substation, such as surge arrestor, feeders, capacitor bank, relays, current transformer, circuit breaker, etc.

#### D. Documentation and Reporting

- Detailed specifications of all system components
- Technical standards for each component
- Step-by-step installation guide
- Procedures for system monitoring and performance reporting

## **Grid** Interconnection Study

STAR-CENTRE

[The energy generated by a solar project is required to be fed into the grid. This needs a comprehensive grid interconnection study which includes details about the project, grid requirements and regulations.]

| Α.          | Solar Project Description                                                                                                                                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Overview of the solar project, and necessity for grid interconnection<br>Detailed information on the solar project, including capacity, location, and technology<br>Specifications of solar panels, inverters, and other key components. |
| В.          | Grid Interconnection Requirements                                                                                                                                                                                                        |
| -<br>-      | Details on the substation considered for grid interconnection<br>Technical specification for grid connection<br>Compliance of utility regulations and standards                                                                          |
| C.          | Impact Assessment                                                                                                                                                                                                                        |
| -           | Analyzing solar project impact on the grid's stability and power quality<br>Mitigation strategies for potential issues                                                                                                                   |
| D.          | Interconnection System Design                                                                                                                                                                                                            |
| -<br>-<br>- | Detailed design of the grid interconnection system<br>Sizing and selection of equipment like inverters and transformers, etc.<br>Safety and protection schemes                                                                           |
| Ε.          | Grid Studies                                                                                                                                                                                                                             |
| -           | Power flow and fault current analysis<br>Harmonic analysis to assess potential distortion                                                                                                                                                |
| F.          | Cost Estimation                                                                                                                                                                                                                          |
| -           | Interconnection facility cost estimation such as costs for distribution facility, production meter, and substation facility, etc.<br>Estimates for equipment, installation, and any necessary studies                                    |
| G.          | Interconnection Agreement                                                                                                                                                                                                                |
| -           | Outline of the agreement terms with the utility                                                                                                                                                                                          |

- Permitting and approval processes